3.34 \(\int x^3 \sin ^{-1}(a x)^4 \, dx\)

Optimal. Leaf size=198 \[ -\frac {3 \sin ^{-1}(a x)^4}{32 a^4}+\frac {45 \sin ^{-1}(a x)^2}{128 a^4}+\frac {45 x^2}{128 a^2}-\frac {9 x^2 \sin ^{-1}(a x)^2}{16 a^2}+\frac {x^3 \sqrt {1-a^2 x^2} \sin ^{-1}(a x)^3}{4 a}-\frac {3 x^3 \sqrt {1-a^2 x^2} \sin ^{-1}(a x)}{32 a}+\frac {3 x \sqrt {1-a^2 x^2} \sin ^{-1}(a x)^3}{8 a^3}-\frac {45 x \sqrt {1-a^2 x^2} \sin ^{-1}(a x)}{64 a^3}+\frac {1}{4} x^4 \sin ^{-1}(a x)^4-\frac {3}{16} x^4 \sin ^{-1}(a x)^2+\frac {3 x^4}{128} \]

[Out]

45/128*x^2/a^2+3/128*x^4+45/128*arcsin(a*x)^2/a^4-9/16*x^2*arcsin(a*x)^2/a^2-3/16*x^4*arcsin(a*x)^2-3/32*arcsi
n(a*x)^4/a^4+1/4*x^4*arcsin(a*x)^4-45/64*x*arcsin(a*x)*(-a^2*x^2+1)^(1/2)/a^3-3/32*x^3*arcsin(a*x)*(-a^2*x^2+1
)^(1/2)/a+3/8*x*arcsin(a*x)^3*(-a^2*x^2+1)^(1/2)/a^3+1/4*x^3*arcsin(a*x)^3*(-a^2*x^2+1)^(1/2)/a

________________________________________________________________________________________

Rubi [A]  time = 0.52, antiderivative size = 198, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 4, integrand size = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {4627, 4707, 4641, 30} \[ \frac {45 x^2}{128 a^2}+\frac {x^3 \sqrt {1-a^2 x^2} \sin ^{-1}(a x)^3}{4 a}-\frac {3 x^3 \sqrt {1-a^2 x^2} \sin ^{-1}(a x)}{32 a}-\frac {9 x^2 \sin ^{-1}(a x)^2}{16 a^2}+\frac {3 x \sqrt {1-a^2 x^2} \sin ^{-1}(a x)^3}{8 a^3}-\frac {45 x \sqrt {1-a^2 x^2} \sin ^{-1}(a x)}{64 a^3}-\frac {3 \sin ^{-1}(a x)^4}{32 a^4}+\frac {45 \sin ^{-1}(a x)^2}{128 a^4}+\frac {1}{4} x^4 \sin ^{-1}(a x)^4-\frac {3}{16} x^4 \sin ^{-1}(a x)^2+\frac {3 x^4}{128} \]

Antiderivative was successfully verified.

[In]

Int[x^3*ArcSin[a*x]^4,x]

[Out]

(45*x^2)/(128*a^2) + (3*x^4)/128 - (45*x*Sqrt[1 - a^2*x^2]*ArcSin[a*x])/(64*a^3) - (3*x^3*Sqrt[1 - a^2*x^2]*Ar
cSin[a*x])/(32*a) + (45*ArcSin[a*x]^2)/(128*a^4) - (9*x^2*ArcSin[a*x]^2)/(16*a^2) - (3*x^4*ArcSin[a*x]^2)/16 +
 (3*x*Sqrt[1 - a^2*x^2]*ArcSin[a*x]^3)/(8*a^3) + (x^3*Sqrt[1 - a^2*x^2]*ArcSin[a*x]^3)/(4*a) - (3*ArcSin[a*x]^
4)/(32*a^4) + (x^4*ArcSin[a*x]^4)/4

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 4627

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcSi
n[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1))/Sqrt[1
- c^2*x^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 4641

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSin[c*x])^
(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] && NeQ[n,
-1]

Rule 4707

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
(f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*(a + b*ArcSin[c*x])^n)/(e*m), x] + (Dist[(f^2*(m - 1))/(c^2*m), Int[((f*x)^(m
 - 2)*(a + b*ArcSin[c*x])^n)/Sqrt[d + e*x^2], x], x] + Dist[(b*f*n*Sqrt[1 - c^2*x^2])/(c*m*Sqrt[d + e*x^2]), I
nt[(f*x)^(m - 1)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] &&
GtQ[n, 0] && GtQ[m, 1] && IntegerQ[m]

Rubi steps

\begin {align*} \int x^3 \sin ^{-1}(a x)^4 \, dx &=\frac {1}{4} x^4 \sin ^{-1}(a x)^4-a \int \frac {x^4 \sin ^{-1}(a x)^3}{\sqrt {1-a^2 x^2}} \, dx\\ &=\frac {x^3 \sqrt {1-a^2 x^2} \sin ^{-1}(a x)^3}{4 a}+\frac {1}{4} x^4 \sin ^{-1}(a x)^4-\frac {3}{4} \int x^3 \sin ^{-1}(a x)^2 \, dx-\frac {3 \int \frac {x^2 \sin ^{-1}(a x)^3}{\sqrt {1-a^2 x^2}} \, dx}{4 a}\\ &=-\frac {3}{16} x^4 \sin ^{-1}(a x)^2+\frac {3 x \sqrt {1-a^2 x^2} \sin ^{-1}(a x)^3}{8 a^3}+\frac {x^3 \sqrt {1-a^2 x^2} \sin ^{-1}(a x)^3}{4 a}+\frac {1}{4} x^4 \sin ^{-1}(a x)^4-\frac {3 \int \frac {\sin ^{-1}(a x)^3}{\sqrt {1-a^2 x^2}} \, dx}{8 a^3}-\frac {9 \int x \sin ^{-1}(a x)^2 \, dx}{8 a^2}+\frac {1}{8} (3 a) \int \frac {x^4 \sin ^{-1}(a x)}{\sqrt {1-a^2 x^2}} \, dx\\ &=-\frac {3 x^3 \sqrt {1-a^2 x^2} \sin ^{-1}(a x)}{32 a}-\frac {9 x^2 \sin ^{-1}(a x)^2}{16 a^2}-\frac {3}{16} x^4 \sin ^{-1}(a x)^2+\frac {3 x \sqrt {1-a^2 x^2} \sin ^{-1}(a x)^3}{8 a^3}+\frac {x^3 \sqrt {1-a^2 x^2} \sin ^{-1}(a x)^3}{4 a}-\frac {3 \sin ^{-1}(a x)^4}{32 a^4}+\frac {1}{4} x^4 \sin ^{-1}(a x)^4+\frac {3 \int x^3 \, dx}{32}+\frac {9 \int \frac {x^2 \sin ^{-1}(a x)}{\sqrt {1-a^2 x^2}} \, dx}{32 a}+\frac {9 \int \frac {x^2 \sin ^{-1}(a x)}{\sqrt {1-a^2 x^2}} \, dx}{8 a}\\ &=\frac {3 x^4}{128}-\frac {45 x \sqrt {1-a^2 x^2} \sin ^{-1}(a x)}{64 a^3}-\frac {3 x^3 \sqrt {1-a^2 x^2} \sin ^{-1}(a x)}{32 a}-\frac {9 x^2 \sin ^{-1}(a x)^2}{16 a^2}-\frac {3}{16} x^4 \sin ^{-1}(a x)^2+\frac {3 x \sqrt {1-a^2 x^2} \sin ^{-1}(a x)^3}{8 a^3}+\frac {x^3 \sqrt {1-a^2 x^2} \sin ^{-1}(a x)^3}{4 a}-\frac {3 \sin ^{-1}(a x)^4}{32 a^4}+\frac {1}{4} x^4 \sin ^{-1}(a x)^4+\frac {9 \int \frac {\sin ^{-1}(a x)}{\sqrt {1-a^2 x^2}} \, dx}{64 a^3}+\frac {9 \int \frac {\sin ^{-1}(a x)}{\sqrt {1-a^2 x^2}} \, dx}{16 a^3}+\frac {9 \int x \, dx}{64 a^2}+\frac {9 \int x \, dx}{16 a^2}\\ &=\frac {45 x^2}{128 a^2}+\frac {3 x^4}{128}-\frac {45 x \sqrt {1-a^2 x^2} \sin ^{-1}(a x)}{64 a^3}-\frac {3 x^3 \sqrt {1-a^2 x^2} \sin ^{-1}(a x)}{32 a}+\frac {45 \sin ^{-1}(a x)^2}{128 a^4}-\frac {9 x^2 \sin ^{-1}(a x)^2}{16 a^2}-\frac {3}{16} x^4 \sin ^{-1}(a x)^2+\frac {3 x \sqrt {1-a^2 x^2} \sin ^{-1}(a x)^3}{8 a^3}+\frac {x^3 \sqrt {1-a^2 x^2} \sin ^{-1}(a x)^3}{4 a}-\frac {3 \sin ^{-1}(a x)^4}{32 a^4}+\frac {1}{4} x^4 \sin ^{-1}(a x)^4\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 135, normalized size = 0.68 \[ \frac {4 \left (8 a^4 x^4-3\right ) \sin ^{-1}(a x)^4+3 a^2 x^2 \left (a^2 x^2+15\right )+16 a x \sqrt {1-a^2 x^2} \left (2 a^2 x^2+3\right ) \sin ^{-1}(a x)^3-6 a x \sqrt {1-a^2 x^2} \left (2 a^2 x^2+15\right ) \sin ^{-1}(a x)-3 \left (8 a^4 x^4+24 a^2 x^2-15\right ) \sin ^{-1}(a x)^2}{128 a^4} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3*ArcSin[a*x]^4,x]

[Out]

(3*a^2*x^2*(15 + a^2*x^2) - 6*a*x*Sqrt[1 - a^2*x^2]*(15 + 2*a^2*x^2)*ArcSin[a*x] - 3*(-15 + 24*a^2*x^2 + 8*a^4
*x^4)*ArcSin[a*x]^2 + 16*a*x*Sqrt[1 - a^2*x^2]*(3 + 2*a^2*x^2)*ArcSin[a*x]^3 + 4*(-3 + 8*a^4*x^4)*ArcSin[a*x]^
4)/(128*a^4)

________________________________________________________________________________________

fricas [A]  time = 1.29, size = 121, normalized size = 0.61 \[ \frac {3 \, a^{4} x^{4} + 4 \, {\left (8 \, a^{4} x^{4} - 3\right )} \arcsin \left (a x\right )^{4} + 45 \, a^{2} x^{2} - 3 \, {\left (8 \, a^{4} x^{4} + 24 \, a^{2} x^{2} - 15\right )} \arcsin \left (a x\right )^{2} + 2 \, \sqrt {-a^{2} x^{2} + 1} {\left (8 \, {\left (2 \, a^{3} x^{3} + 3 \, a x\right )} \arcsin \left (a x\right )^{3} - 3 \, {\left (2 \, a^{3} x^{3} + 15 \, a x\right )} \arcsin \left (a x\right )\right )}}{128 \, a^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arcsin(a*x)^4,x, algorithm="fricas")

[Out]

1/128*(3*a^4*x^4 + 4*(8*a^4*x^4 - 3)*arcsin(a*x)^4 + 45*a^2*x^2 - 3*(8*a^4*x^4 + 24*a^2*x^2 - 15)*arcsin(a*x)^
2 + 2*sqrt(-a^2*x^2 + 1)*(8*(2*a^3*x^3 + 3*a*x)*arcsin(a*x)^3 - 3*(2*a^3*x^3 + 15*a*x)*arcsin(a*x)))/a^4

________________________________________________________________________________________

giac [A]  time = 0.16, size = 234, normalized size = 1.18 \[ -\frac {{\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}} x \arcsin \left (a x\right )^{3}}{4 \, a^{3}} + \frac {{\left (a^{2} x^{2} - 1\right )}^{2} \arcsin \left (a x\right )^{4}}{4 \, a^{4}} + \frac {5 \, \sqrt {-a^{2} x^{2} + 1} x \arcsin \left (a x\right )^{3}}{8 \, a^{3}} + \frac {{\left (a^{2} x^{2} - 1\right )} \arcsin \left (a x\right )^{4}}{2 \, a^{4}} + \frac {3 \, {\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}} x \arcsin \left (a x\right )}{32 \, a^{3}} - \frac {3 \, {\left (a^{2} x^{2} - 1\right )}^{2} \arcsin \left (a x\right )^{2}}{16 \, a^{4}} + \frac {5 \, \arcsin \left (a x\right )^{4}}{32 \, a^{4}} - \frac {51 \, \sqrt {-a^{2} x^{2} + 1} x \arcsin \left (a x\right )}{64 \, a^{3}} - \frac {15 \, {\left (a^{2} x^{2} - 1\right )} \arcsin \left (a x\right )^{2}}{16 \, a^{4}} + \frac {3 \, {\left (a^{2} x^{2} - 1\right )}^{2}}{128 \, a^{4}} - \frac {51 \, \arcsin \left (a x\right )^{2}}{128 \, a^{4}} + \frac {51 \, {\left (a^{2} x^{2} - 1\right )}}{128 \, a^{4}} + \frac {195}{1024 \, a^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arcsin(a*x)^4,x, algorithm="giac")

[Out]

-1/4*(-a^2*x^2 + 1)^(3/2)*x*arcsin(a*x)^3/a^3 + 1/4*(a^2*x^2 - 1)^2*arcsin(a*x)^4/a^4 + 5/8*sqrt(-a^2*x^2 + 1)
*x*arcsin(a*x)^3/a^3 + 1/2*(a^2*x^2 - 1)*arcsin(a*x)^4/a^4 + 3/32*(-a^2*x^2 + 1)^(3/2)*x*arcsin(a*x)/a^3 - 3/1
6*(a^2*x^2 - 1)^2*arcsin(a*x)^2/a^4 + 5/32*arcsin(a*x)^4/a^4 - 51/64*sqrt(-a^2*x^2 + 1)*x*arcsin(a*x)/a^3 - 15
/16*(a^2*x^2 - 1)*arcsin(a*x)^2/a^4 + 3/128*(a^2*x^2 - 1)^2/a^4 - 51/128*arcsin(a*x)^2/a^4 + 51/128*(a^2*x^2 -
 1)/a^4 + 195/1024/a^4

________________________________________________________________________________________

maple [A]  time = 0.09, size = 209, normalized size = 1.06 \[ \frac {\frac {a^{4} x^{4} \arcsin \left (a x \right )^{4}}{4}-\frac {\arcsin \left (a x \right )^{3} \left (-2 a^{3} x^{3} \sqrt {-a^{2} x^{2}+1}-3 a x \sqrt {-a^{2} x^{2}+1}+3 \arcsin \left (a x \right )\right )}{8}-\frac {3 a^{4} x^{4} \arcsin \left (a x \right )^{2}}{16}+\frac {3 \arcsin \left (a x \right ) \left (-2 a^{3} x^{3} \sqrt {-a^{2} x^{2}+1}-3 a x \sqrt {-a^{2} x^{2}+1}+3 \arcsin \left (a x \right )\right )}{64}+\frac {27 \arcsin \left (a x \right )^{2}}{128}+\frac {3 a^{4} x^{4}}{128}+\frac {45 a^{2} x^{2}}{128}-\frac {9 \left (a^{2} x^{2}-1\right ) \arcsin \left (a x \right )^{2}}{16}-\frac {9 \arcsin \left (a x \right ) \left (a x \sqrt {-a^{2} x^{2}+1}+\arcsin \left (a x \right )\right )}{16}+\frac {9 \arcsin \left (a x \right )^{4}}{32}}{a^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*arcsin(a*x)^4,x)

[Out]

1/a^4*(1/4*a^4*x^4*arcsin(a*x)^4-1/8*arcsin(a*x)^3*(-2*a^3*x^3*(-a^2*x^2+1)^(1/2)-3*a*x*(-a^2*x^2+1)^(1/2)+3*a
rcsin(a*x))-3/16*a^4*x^4*arcsin(a*x)^2+3/64*arcsin(a*x)*(-2*a^3*x^3*(-a^2*x^2+1)^(1/2)-3*a*x*(-a^2*x^2+1)^(1/2
)+3*arcsin(a*x))+27/128*arcsin(a*x)^2+3/128*a^4*x^4+45/128*a^2*x^2-9/16*(a^2*x^2-1)*arcsin(a*x)^2-9/16*arcsin(
a*x)*(a*x*(-a^2*x^2+1)^(1/2)+arcsin(a*x))+9/32*arcsin(a*x)^4)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {1}{4} \, x^{4} \arctan \left (a x, \sqrt {a x + 1} \sqrt {-a x + 1}\right )^{4} + a \int \frac {\sqrt {a x + 1} \sqrt {-a x + 1} x^{4} \arctan \left (a x, \sqrt {a x + 1} \sqrt {-a x + 1}\right )^{3}}{a^{2} x^{2} - 1}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arcsin(a*x)^4,x, algorithm="maxima")

[Out]

1/4*x^4*arctan2(a*x, sqrt(a*x + 1)*sqrt(-a*x + 1))^4 + a*integrate(sqrt(a*x + 1)*sqrt(-a*x + 1)*x^4*arctan2(a*
x, sqrt(a*x + 1)*sqrt(-a*x + 1))^3/(a^2*x^2 - 1), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int x^3\,{\mathrm {asin}\left (a\,x\right )}^4 \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*asin(a*x)^4,x)

[Out]

int(x^3*asin(a*x)^4, x)

________________________________________________________________________________________

sympy [A]  time = 6.10, size = 190, normalized size = 0.96 \[ \begin {cases} \frac {x^{4} \operatorname {asin}^{4}{\left (a x \right )}}{4} - \frac {3 x^{4} \operatorname {asin}^{2}{\left (a x \right )}}{16} + \frac {3 x^{4}}{128} + \frac {x^{3} \sqrt {- a^{2} x^{2} + 1} \operatorname {asin}^{3}{\left (a x \right )}}{4 a} - \frac {3 x^{3} \sqrt {- a^{2} x^{2} + 1} \operatorname {asin}{\left (a x \right )}}{32 a} - \frac {9 x^{2} \operatorname {asin}^{2}{\left (a x \right )}}{16 a^{2}} + \frac {45 x^{2}}{128 a^{2}} + \frac {3 x \sqrt {- a^{2} x^{2} + 1} \operatorname {asin}^{3}{\left (a x \right )}}{8 a^{3}} - \frac {45 x \sqrt {- a^{2} x^{2} + 1} \operatorname {asin}{\left (a x \right )}}{64 a^{3}} - \frac {3 \operatorname {asin}^{4}{\left (a x \right )}}{32 a^{4}} + \frac {45 \operatorname {asin}^{2}{\left (a x \right )}}{128 a^{4}} & \text {for}\: a \neq 0 \\0 & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*asin(a*x)**4,x)

[Out]

Piecewise((x**4*asin(a*x)**4/4 - 3*x**4*asin(a*x)**2/16 + 3*x**4/128 + x**3*sqrt(-a**2*x**2 + 1)*asin(a*x)**3/
(4*a) - 3*x**3*sqrt(-a**2*x**2 + 1)*asin(a*x)/(32*a) - 9*x**2*asin(a*x)**2/(16*a**2) + 45*x**2/(128*a**2) + 3*
x*sqrt(-a**2*x**2 + 1)*asin(a*x)**3/(8*a**3) - 45*x*sqrt(-a**2*x**2 + 1)*asin(a*x)/(64*a**3) - 3*asin(a*x)**4/
(32*a**4) + 45*asin(a*x)**2/(128*a**4), Ne(a, 0)), (0, True))

________________________________________________________________________________________